LESSON 5.4c

Solving Radical Inequalities

Today you will:

- Remember the stuff we forgot about inequalities! ③
- Solve inequalities with radicals in them.
- Practice using English to describe math processes and equations

What are inequalities? Algebraic statements that do not have = but instead have:

- <>
- ≥ <|

How to solve an inequality:

- Same as solving an equality (just treat the inequality symbol as an =)
- ...but
- ...except
- ... for one situation
- ٠ ...
- When you multiply or divide both sides by a negative...
- ...then you need to flip the inequality
- ... < becomes >
- $... \leq becomes \geq$
- ...and vice-versa

Solve the inequality. Graph the solution.

 $2v-4 \ge 8$

SOLUTION

$2v-4 \ge 8$	Write the inequality.
<u>+4</u> <u>+4</u>	Add 4 to each side.
$2v \ge 12$	Simplify.
$\frac{2v}{2} \ge \frac{12}{2}$	Divide each side by 2.
$v \ge 6$	Simplify.

The solution is $v \ge 6$.

Solve the inequality. Graph the solution.

 $\frac{y}{-6} + 7 < 9$

SOLUTION

Write the inequality.

Simplify.

Subtract 7 from each side.

 $\frac{y}{-6} < 2$

 $-6 \cdot \frac{y}{-6} > -6 \cdot 2$

 $\frac{y}{-6} + 7 < 9$

<u>-7</u> <u>-7</u>

Multiply each side by -6.

y > -12 Simplify.

The solution is y > -12.

Solve 6x - 5 < 2x + 11. SOLUTION

6x - 5 < 2x + 11	Write the inequality.
<u>+5</u> <u>+5</u>	Add 5 to each side.
6x < 2x + 16	Simplify.
-2x - 2x	Subtract 2 <i>x</i> from each side.
4 <i>x</i> < 16	Simplify.
$\frac{4x}{4} < \frac{16}{4}$	Divide each by 4.
<i>x</i> < 4	Simplify.
The solution is $x < 4$.	

Solve $3\sqrt{x-1} \le 12$.

SOLUTION

	Step 1	Solve for <i>x</i> .			
		$3\sqrt{x-1} \le 12$	Write the original inequality.		
		$\sqrt{x-1} \le 4$	Divide each side by 3.		
		<i>x</i> − 1 ≤ 16	Square each side.		
- 1	Step 2	$x \le 17$ Consider the radicand.	Add 1 to each side.		
		$x - 1 \ge 0$ $x \ge 1$	The radicand cannot be negative. Add 1 to each side.		
	So, the solution is $1 \le x \le 17$.				

	Solve $2\sqrt{x} - 3 \ge 3$.		
	SOLUTION		
	Step 1	Solve for <i>x</i> .	
		$2\sqrt{x} - 3 \ge 3$	Write the original inequality.
		$2\sqrt{x} \ge 6$	Add 3 to each side.
		$\sqrt{x} \ge 3$	Divide both sides by 2.
		$x \ge 9$	Square both sides.
(9,3)	Step 2	Consider the radicand.	
		$x \ge 0$	The radicand cannot be negative.
8 10			But we already have decided <i>x</i> must be greater than 9 so this is not needed
	So,	the solution is $x \ge 9$.	$x \ge 9$ takes care of $x \ge 0$ *AND* $x \ge 0$ includes values that do not work!

Check

Solve $-4\sqrt[3]{x+1} < 8$.

SOLUTION

Solve for *x*. Step 1 $-4\sqrt[3]{x+1} < 8$ Write the original inequality. $\sqrt[3]{x+1} > -2$ Divide each side by -4, flip inequality. x + 1 > -8Cube both sides. 10 Subtract 1 from each side. x > -9Consider the radicand. Step 2 The root is odd so there are no $\sqrt[3]{x+1}$ limits on the radicand.

So, the solution is x > -9.

Check

Homework

Pg 266, #37-44, 47-53